- WIDE SUPPLY VOLTAGE RANGE (3-18V)
- MINIMUM EXTERNAL COMPONENTS
- NO SWR CAPACITOR
- NO BOOTSTRAP
- NO BOUCHEROT CELLS
- INTERNALLY FIXED GAIN
- STAND-BY \& MUTE FUNCTIONS
- SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION

DESCRIPTION

The TDA7266 is a dual bridge amplifier specially designed for TV and Portable Radio applications.

TECHNOLOGY BI20II

Multiwatt 15
ORDERING NUMBER: TDA7266

BLOCK AND APPLICATION DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{S}	Supply Voltage	20	V
I_{o}	Output Peak Current (internally limited)	2	A
$\mathrm{P}_{\text {tot }}$	Total Power Dissipation $\left(\mathrm{T}_{\text {case }}=70^{\circ} \mathrm{C}\right)$	33	W
$\mathrm{~T}_{\text {op }}$	Operating Temperature	0 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and Junction Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

Symbol	Description	Value		Unit
$\mathrm{R}_{\text {th } \mathrm{j} \text {-case }}$	Thermal Resistance Junction to case	Typ. 1.4		Max. 2
${ }^{\circ} \mathrm{C} / \mathrm{W}$				

PIN CONNECTION (Top view)

ELECTRICAL CHARACTERISTICS (Vcc $=11 \mathrm{~V}, \mathrm{RL}=8 \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
$\mathrm{V}_{C C}$	Supply Range		3	11	18	V
I_{a}	Total Quiescent Current			50	65	mA
Vos	Output Offset Voltage				120	mV
Po	Output Power	THD = 10\%	6.3	7		W
THD	Total Harmonic Distortion	$\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$		0.05	0.2	\%
		$\mathrm{Po}=0.1 \mathrm{~W}$ to 2 W $\mathrm{f}=100 \mathrm{~Hz}$ to 15 kHz			1	\%
SVR	Supply Voltage Rejection	$\mathrm{f}=100 \mathrm{~Hz}$ VR $=0.5 \mathrm{~V}$	40	56		dB
CT	Crosstalk		46	60		dB
$\mathrm{A}_{\text {MUTE }}$	Mute Attenuation		60	80		dB
Tw	Thermal Threshold			150		${ }^{\circ} \mathrm{C}$
Gv	Closed Loop Voltage Gain		25	26	27	dB
$\Delta \mathrm{Gv}$	Voltage Gain Matching				0.5	dB
R_{i}	Input Resistance		25	30		$\mathrm{K} \Omega$
VT MUTE	Mute Threshold	$\begin{aligned} & \text { for } V_{C C}>6.4 V ; V_{O}=-30 \mathrm{~dB} \\ & \text { for } V_{C C}<6.4 V ; V_{O}=-30 \mathrm{~dB} \end{aligned}$	$\begin{gathered} 2.3 \\ \mathrm{~V}_{\mathrm{cc} / 2} \\ -1 \end{gathered}$	2.9 $\mathrm{V}_{\mathrm{cc}} / 2$ -0.75	$\begin{gathered} 4.1 \\ \mathrm{~V}_{\mathrm{cc} / 2} \\ -0.5 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

ELECTRICAL CHARACTERISTICS (Continued)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
$\mathrm{VT}_{\text {ST-BY }}$	St-by Threshold		0.8	1.3	1.8	V
$\mathrm{I}_{\text {ST-BY }}$	ST-BY current V6 = GND				100	$\mu \mathrm{~A}$
e_{N}	Total Output Noise Voltage	A curve $\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz		150		$\mu \mathrm{~V}$

APPLICATION SUGGESTION

STAND-BY AND MUTE FUNCTIONS
(A) Microprocessor Application

In order to avoid annoying "Pop-Noise" during Turn-On/Off transients, it is necessary to guarantee the right St-by and mute signals sequence. It is quite simple to obtain this function using a microprocessor (Fig. 1 and 2).
At first St-by signal (from mP) goes high and the voltage across the St-by terminal (Pin 7) starts to increase exponentially. The external RC network is intended to turn-on slowly the biasing circuits of
the amplifier, this to avoid "POP" and "CLICK" on the outputs.
When this voltage reaches the St-by threshold level, the amplifier is switched-on and the external capacitors in series to the input terminals (C3, C5) start to charge.
It's necessary to mantain the mute signal low until the capacitors are fully charged, this to avoid that the device goes in play mode causing a loud "Pop Noise" on the speakers.
A delay of $100-200 \mathrm{~ms}$ between St-by and mute signals is suitable for a proper operation.

Figure 1: Microprocessor Application

TDA7266

Figure 2: Microprocessor Driving Signals.

(B) Low Cost Application

In low cost applications where the mP is not present, the suggested circuit is shown in fig. 3 .
The St-by and mute terminals are tied together and they are connected to the supply line via an
external voltage divider.
The device is switched-on/off from the supply line and the external capacitor C 4 is intended to delay the St-by and mute threshold exceeding, avoiding "Popping" problems.

Figure 3a: Stand-alone Low-cost Application.

Figure 3b: PCB and Component Layout of the Application Circuit (Fig. 1).

Figure 4: Distortion vs Output Power

Figure 6: Distortion vs Frequency

Figure 8: Output Power vs. Supply Voltage

Figure 5: Distortion vs Output Power

Figure 7: Gain vs Frequency

Figure 9: Total Power Dissipation \& Efficiency vs. Output Power

Figure 10: Mute Attenuation vs. V pin. 6

Figure 11: Stand-By Attenuation vs Vpin. 7

Figure 12: Quiescent Current vs. Supply Voltage

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			5			0.197
B			2.65			0.104
C			1.6			0.063
D		1			0.039	
E	0.49		0.55	0.019		0.022
F	0.66		0.75	0.026		0.030
G	1.02	1.27	1.52	0.040	0.050	0.060
G1	17.53	17.78	18.03	0.690	0.700	0.710
H1	19.6			0.772		
H2			20.2			0.795
L	21.9	22.2	22.5	0.862	0.874	0.886
L1	21.7	22.1	22.5	0.854	0.870	0.886
L2	17.65		18.1	0.695		0.713
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
M	4.25	4.55	4.85	0.167	0.179	0.191
M1	4.63	5.08	5.53	0.182	0.200	0.218
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

OUTLINE AND
MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com

